| [1]赵扬,徐厚昌,鲁淑群,等. 滤饼微观结构及其测量结果的分析研究[J]. 流体机械, 2010, 38(08): 31-37.[2]石常省,谢广元,张悦秋. 细粒煤压滤滤饼的微观结构分析[J]. 中国矿业大学学报, 2006, (01): 99-103.[3]J. Liu,Y. Li,Y. Li, et al. Effects of pore structure on thermal conductivity and strength of alumina porous ceramics using carbon black as pore-forming agent[J]. Ceramics International, 2016: 8221-8228.[4]陈少辉. 浮选精煤正压级配脱水机制研究[D]. 中国矿业大学, 2016[5]Nie b Liu-X-Yang-L-et-al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel, 2015, 158: 908-917.[6]Sun c Tang-S-Zhang-S-et-al. Nanopore characteristics of late paleozoic transitional facies coal-bearing shale in Ningwu basin, China investigated by nuclear magnetic resonance and low-pressure nitrogen adsorption[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6433-6444.[7]Zhao j Xu-H-Tang-D-et-al. Coal seam porosity and fracture heterogeneity of macrolithotypes in the Hancheng Block, eastern margin, Ordos Basin, China[J]. International Journal of Coal Geology, 2016, 159: 18-29.[8]Zhao y Sun-Y-Liu-S-et-al. Pore structure characterization of coal by NMR cryoporometry[J]. Fuel, 2017, 190: 359-369.[9]Jing y Armstrong-R-T-Ramandi-H-L-et-al. Coal cleat reconstruction using micro-computed tomography imaging[J]. Fuel, 2016, 181: 286-299.[10]Zhang y Xu-X-Lebedev-M-et-al. Multi-scale x-ray computed tomography analysis of coal microstructure and permeability changes as a function of effective stress[J]. International Journal of Coal Geology, 2016, 165: 149-156.[11]Mathews j p Campbell-Q-P-Xu-H-et-al. A review of the application of X-ray computed tomography to the study of coal[J]. Fuel, 2017, 209: 10-24.[12]Yao y Liu-D-Che-Y-et-al. Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography[J]. International Journal of Coal Geology, 80(2): 113-123.[13]Jing y Armstrong-R-T-Mostaghimi-P. Digital coal: Generation of fractured cores with microscale features[J]. Fuel, 2017, 207: 93-101.[14]Ni x Chen-W-Li-Z-et-al. Reconstruction of different scales of pore-fractures network of coal reservoir and its permeability prediction with Monte Carlo method[J], 2017, 27(4): 693-699.[15]Sun l Wang-X-Jin-X-et-al. Three dimensional characterization and quantitative connectivity analysis of micro/nano pore space[J], 2016, 43(3): 537-546.[16]Liu s Sang-S-Wang-G-et-al. FIB-SEM and X-ray CT characterization of interconnected pores in high-rank coal formed from regional metamorphism[J]. Journal of Petroleum Science and Engineering, 2017, 148: 21-31.[17]Kong x Wang-E-He-X-et-al. Time-varying multifractal of acoustic emission about coal samples subjected to uniaxial compression[J]. Chaos,Solitons&Fractals, 2017, 103: 571-577.[18]Kong x Wang-E-Hu-S-et-al. Fractal characteristics and acoustic emission of coal containing methane in triaxial compression failure[J]. Journal of Applied Geophysics, 2016, 124: 139-147.[19]Cai y Liu-D-Mathews-J-P-et-al. Permeability evolution in fractured coal—combining triaxial confinement with X-ray computed tomography, acoustic emission and ultrasonic techniques[J]. International Journal of Coal Geology, 2014, 122: 91-104.[20]Pan j Wang-K-Hou-Q-et-al. Micro-pores and fractures of coals analysed by field emission scanning electron microscopy and fractal theory[J]. Fuel, 2016, 164: 277-285.[21]Cai y Liu-D-Pan-Z-et-al. Investigating the effects of seepage-pores and fractures on coal permeability by fractal analysis[J]. Transport in Porous Media, 2016, 111(2): 479-497.[22]Fu h Tang-D-Xu-T-et-al. Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China[J]. Fuel, 2017, 193: 254-264.[23]Zhang r Ai-T-Zhou-H-W-et-al. Fractal and volume characteristics of 3D mining-induced fractures under typical mining layouts[J]. Environmental Earth Sciences, 2015, 73(10): 6069-6080.[24]徐新阳,邓常烈,罗蒨,等. 滤饼结构的分形研究[J]. 金属矿山, 1993, (09): 42-44, 53.[25]许莉,李文萍,鲁淑群,等. 滤饼结构的分形研究[J]. 过滤与分离, 2000, (04): 22-25.[26]陈晨. 疏水改性对选煤厂煤泥压滤特性的影响研究[D]. 安徽理工大学, 2015[27]陈茹霞,樊玉萍,冯泽宇,等. 浓度和粒度对细粒煤滤饼结构影响的研究[J]. 中国矿业, 2017, 26(02): 133-138.[28]王东辉. 基于滤饼孔隙结构的煤泥水过滤脱水机理与调控研究[D]. 中国矿业大学(北京), 2018[29]Qiu Weiguo. Three Dimensional Reconstruction of Porous Media X-CT Image[J]. Advances in Porous Flow, 2014, 04: 59-64.[30]黎晨,尤培蒙,皮启星,等. ImageJ软件在医学科研领域中的应用研究现况[J]. 甘肃科技, 2020, 36(02): 58-61.[31]何宝林,杨晚竹,陈婷,等. ImageJ软件在显微图像细胞计数中应用的可行性研究[J]. 医疗卫生装备, 2022, 43(02): 13-18, 35.[32]程振丰,付丙鲜,祝增荣,等. 一种使用Image J重构昆虫感器支配神经的方法[J]. 应用昆虫学报, 2022, 59(01): 213-221.[33]洪彰岑(Chang-Tsen,Hung),俞胜正(Sun-Tseng,等. 利用ImageJ Volume Viewer进行三维影像显示[J], 2013.[34]张培,李梦洁,孙水发,等. ImageJ软件在三维立体CT图像处理中的应用[J]. 电脑开发与应用, 2012, 25(10): 9-12.[35]吕邦民. 煤基多孔碳的孔隙三维表征及渗透研究[D]. 中国矿业大学, 2019[36]曾绍飞,梁深林,张学鹏,等. 基于钨尾矿细观形态特征的综合利用可行性研究[J]. 江西冶金, 2023, 43(02): 101-105, 113.[37]杨长华,董宪姝,陈茹霞,等. 气泡对浮选精煤压滤压力及脱水性能影响机理[EB]: 洁净煤技术, 2024: 172-179.[38]MD Rintoul,S. Torquato. Computer simulations of dense hard-sphere systems[J]. Journal of Chemical Physics, 1996, 105(20): 9258-9265.[39]施兴华. 煤中微裂隙结构特征及其对煤渗透性的控制机理[D]. 河南理工大学, 2018[40]李明. 构造煤结构演化及成因机制[D]. 中国矿业大学, 2013[41]夏宇轩. 低渗储层微观孔隙结构分形表征及渗流特性研究[D]. 中国地质大学, 2022[42]Gang Wang,Junnan Shen,Shimin Liu, et al. Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104082.[43]Zeyu Feng,Xianshu Dong,Yuping Fan, et al. Use of X-ray microtomography to quantitatively characterize the pore structure of three-dimensional filter cakes[J]. Minerals Engineering, 2020, 152: 106275.[44]M. Barrande,R. Bouchet,R. Denoyel. Tortuosity of Porous Particles[J]. Analytical Chemistry, 2007, 79(23): 9115-21.[45]王小会,薛延刚,李晓青. 基于Dijkstra算法过必经点的最短路径设计[J]. 陕西理工大学学报(自然科学版), 2020, 36(03): 68-73.[46]王树西,李安渝. Dijkstra算法中的多邻接点与多条最短路径问题[J]. 计算机科学, 2014, 41(06): 217-224.[47]冯泽宇,董宪姝,樊玉萍,等. 基于显微CT技术的滤饼微观孔隙结构研究[J]. 矿业研究与开发, 2021, 41(03): 131-135. |